1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
// This file is part of the Universal Laboratory (uLab)
//
// © 2017 - 2019 Raptor Engineering, LLC
// All Rights Reserved
//
// Licensed under the terms of the AGPL v3
module control_fpga_top
(
// Input clock
input wire main_12_mhz_clock,
// Guest FPGA interface
output wire guest_logic_reset, // Active high guest logic reset signal
input wire [3:0] four_bit_output, // Output from the user program to the remote access module
output wire [3:0] four_bit_input, // Input to the user program from the remote access module
input wire [7:0] eight_bit_output, // Output from the user program to the remote access module
output wire [7:0] eight_bit_input, // Input to the user program from the remote access module
input wire [15:0] sixteen_bit_output, // Output from the user program to the remote access module
output wire [15:0] sixteen_bit_input, // Input to the user program from the remote access module
input wire [5:0] lcd_data_in_address,
input wire [7:0] lcd_data_in_data,
input wire lcd_data_in_enable,
input wire [7:0] led_segment_bus,
input wire [3:0] led_digit_select,
// Serial interface
input wire serial_input,
output wire serial_output,
// On-board diagnostic LEDs
output wire [7:0] led_bank
);
parameter RAM_ADDR_BITS = 0;
// Synthesize 50MHz clock from 12MHz clock
wire main_50_mhz_clock;
wire pll_locked;
SB_PLL40_CORE #(
.FEEDBACK_PATH("SIMPLE"),
.DIVR(4'b0000), // DIVR = 0
.DIVF(7'b1000010), // DIVF = 66
.DIVQ(3'b100), // DIVQ = 4
.FILTER_RANGE(3'b001) // FILTER_RANGE = 1
) system_pll (
.LOCK(pll_locked),
.RESETB(1'b1),
.BYPASS(1'b0),
.REFERENCECLK(main_12_mhz_clock),
.PLLOUTCORE(main_50_mhz_clock)
);
reg [7:0] diagnostic_led_data = 8'b0;
//assign led_bank = eight_bit_input; // Mirror input to the LEDs
assign led_bank = diagnostic_led_data; // Show diagnostic data on LEDs
reg [22:0] slow_clock_divider = 23'b0;
wire slow_clock;
reg [1:0] kr_state = 2'b0;
always @(posedge main_12_mhz_clock) begin
slow_clock_divider <= slow_clock_divider + 1;
end
assign slow_clock = slow_clock_divider[22];
always @(posedge slow_clock) begin
kr_state <= kr_state + 1;
if (pll_locked) begin
case (kr_state)
0: diagnostic_led_data <= 8'b00011000;
1: diagnostic_led_data <= 8'b00100100;
2: diagnostic_led_data <= 8'b01000010;
3: diagnostic_led_data <= 8'b10000001;
endcase
end else begin
diagnostic_led_data <= 8'b0;
end
end
// Instantiate main remote access module
remote_access #(RAM_ADDR_BITS) remote_access(.main_fifty_clock(main_50_mhz_clock), .user_logic_reset(guest_logic_reset), .remote_access_4_bit_output(four_bit_output),
.remote_access_4_bit_input(four_bit_input), .remote_access_8_bit_output(eight_bit_output),
.remote_access_8_bit_input(eight_bit_input), .remote_access_16_bit_output(sixteen_bit_output),
.remote_access_16_bit_input(sixteen_bit_input),
.serial_port_receiver(serial_input), .serial_port_transmitter(serial_output), .remote_access_input_enable(1'b0),
.local_input(8'b0), .seize_serial_tx(1'b0), .serial_tx_data(8'b0), .serial_tx_strobe(1'b0),
.lcd_data_in_address(lcd_data_in_address), .lcd_data_in_data(lcd_data_in_data), .lcd_data_in_enable(lcd_data_in_enable),
.led_segment_bus(led_segment_bus), .led_digit_select(led_digit_select));
endmodule
|